3560 independent reflections

 $R_{\rm int} = 0.023$

3084 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-[2-(4-Hydroxybenzylideneamino)ethyl]-N-[2-(4-oxidobenzylideneamino)ethyl]ammonium

Xiu-Mei Tian, Gang Liu, Yue Feng and Ji-De Wang*

School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046 People's Republic of China Correspondence e-mail: awangjd@xju.edu.cn

Received 27 June 2007; accepted 31 July 2007

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.001 Å; R factor = 0.036; wR factor = 0.112; data-to-parameter ratio = 17.0.

The title Schiff base compound, C₁₈H₂₁N₃O₂, was synthesized by a condensation reaction of 4-hydroxybenzaldehyde with diethylenetriamine. The crystal structure determination reveals that one of the terminal hydroxy groups is deprotonated while the imino group of the molecule is protonated; thus the compound is a zwitterion. The two terminal benzene rings are nearly parallel to one another, with a dihedral angle of 9.94 (6)°. Intermolecular $O-H \cdots O$ and $N-H \cdots O$ hydrogen bonding helps to stabilize the crystal structure.

Related literature

For general background, see: Mohamed (2006); Jiao & Liu (2005); Li et al. (1999); Xiao et al. (2006). For synthesis, see: Xiao et al. (2006).

Experimental

Crystal data

 $C_{18}H_{21}N_3O_2$ $M_r = 311.38$ Orthorhombic, Pbca a = 11.638 (2) Å b = 15.667 (3) Å c = 17.016 (3) Å

 $V = 3102.5 (11) \text{ Å}^3$ Z = 8Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 153 (2) K 0.49 \times 0.47 \times 0.38 mm

Data collection

Rigaku R-AXIS SPIDER diffractometer Absorption correction: none 28871 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	209 parameters
$wR(F^2) = 0.112$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
3560 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1A\cdots O2^{i}$	0.97	1.51	2.4846 (11)	173
$N2-H2A\cdotsO1^{ii}$	0.92	2.00	2.8325 (12)	149
$N2 - H2C \cdot \cdot \cdot O2^{iii}$	0.90	1.88	2.7075 (12)	152

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $x + \frac{1}{2}, y, -z + \frac{3}{2}$; (iii) $x - \frac{1}{2}, y, -z + \frac{3}{2}$.

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (grant Nos. 20461003 and 20562011), the Programme for New Century Excellent Talents in Universities (grant No. NCET-04-0987) and the Specialized Research Fund for the Doctoral Programme of Higher Education (grant No. 200507550033).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2286).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Jiao, T.-F. & Liu, M.-H. (2005). J. Phys. Chem. B, 109, 2532-2539.
- Li, J.-Z., Qin, S.-Y. & Li, Z.-H. (1999). Acta Chim. Sinica, 57, 298-304.
- Mohamed, G. G. (2006). Spectrochim. Acta Part A, 64, 188-195.
- Rigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Version 3.7.0. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Xiao, F.-R., Wang, J.-D., Yue, F., Wu, R.-L. & Li, J. (2006). Acta Chim. Sinica, 64, 1517-1522.

supplementary materials

Acta Cryst. (2007). E63, o3701 [doi:10.1107/S1600536807037397]

N-[2-(4-Hydroxybenzylideneamino)ethyl]-N-[2-(4-oxidobenzylideneamino)ethyl]ammonium

X.-M. Tian, G. Liu, Y. Feng and J.-D. Wang

Comment

Schiff bases are important organic compounds and their metal complexes had a variety of applications including biological, clinical, analytical and catalysis (Mohamed, 2006; Jiao & Liu, 2005). In particular, Schiff bases with nitrogen and oxygen atoms are important biological ligands (Li *et al.*, 1999). Some Schiff base cobalt complexes can absorb molecular oxygen, they were synthesized as functional model compounds to simulate a biological oxygen carrier (Xiao *et al.*, 1987). In our lab, the oxygenation of some cobalt complexes with Schiff bases have been investigated, and found that one molar of the complexes reacted with two molar of oxygen at room temperature (Xiao *et al.*, 2006). As part of our ongoing investigation, the title compound has been prepared and its crystal structure is reported here.

The molecule forms a U type structure (Fig. 1). The bond lengths of N1=C7 and N3=C12 (Table 1) indicate double bonds character. The C1-benzene ring is nearly parallel to the C13-benzene ring, the dihedral angle being 9.94 (6)°. The protonation of N2-imine group make the compound crystallize in a zwitterionic form. The crystal structure is stabilized by O—H···O hydrogen bonding (Table 2).

Experimental

diethylenetriamine(0.103 g, 0.001 mol) in ethyl acetate (10 ml) was dropwised to a solution of 4-hydroxybenzaldehyde (0.244 g, 0.002 mol) in ethyl acetate (20 ml) in an ice-bath, then the reaction mixture was stirred for two hours, The yellow product was isolated by filtration, washed with diethyl ether, dried and obtained 0.264 g (yield 85%) (Xiao *et al.*, 2006). Crystals suitable for single-crystal X-ray diffraction were grown from a solution of methanol by slow evaporation. Elemental analysis, found (calculated for $C_{18}H_{21}N_3O_2$): C 69.18% (69.45%), H 6.51% (6.75%), N 13.45% (13.50%).

Refinement

H atoms bonded to O and N atoms were located in a difference Fourier map and refined as riding in as-found relative positions with $U_{iso}(H) = 1.5U_{eq}(O,N)$. Other H atoms were placed in calculated positions with C—H = 0.95 (aromatic) or 0.99 Å (methylene), and refined in riding mode, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Figure 1. A view of the molecule structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2. The packing structure of the title compound viewed down the *a* axis showing the molecular.

N-[2-(4-hydroxybenzylideneamino)ethyl]-N-[2-(4- oxidobenzylideneamino)ethyl]ammonium

$C_{18}H_{21}N_3O_2$	$D_{\rm x} = 1.333 {\rm ~Mg~m}^{-3}$
$M_r = 311.38$	Melting point: 453 K
Orthorhombic, Pbca	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 23448 reflections
<i>a</i> = 11.638 (2) Å	$\theta = 3.2 - 27.5^{\circ}$
b = 15.667 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 17.016 (3) Å	T = 153 (2) K
$V = 3102.5 (11) \text{ Å}^3$	Block, yellow
Z = 8	$0.49\times0.47\times0.38~mm$
$F_{000} = 1328$	

Data collection

Rigaku R-AXIS SPIDER diffractometer	3084 reflections with $I > 2\sigma(I)$
Radiation source: Rotating Anode	$R_{\rm int} = 0.023$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 153(2) K	$\theta_{\min} = 3.2^{\circ}$
ω scans	$h = -15 \rightarrow 15$
Absorption correction: none	$k = -19 \rightarrow 20$
28871 measured reflections	$l = -20 \rightarrow 22$
3560 independent reflections	

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.097P)^2 + 1.4677P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.036$	$(\Delta/\sigma)_{\text{max}} = 0.001$
$wR(F^2) = 0.112$	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$

<i>S</i> = 1.06	$\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$
3560 reflections	Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
209 parameters	Extinction coefficient: 0.0026 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.31037 (6)	0.14542 (5)	0.55715 (4)	0.02288 (18)
H1A	0.3662	0.1396	0.5148	0.034*
O2	0.94930 (6)	0.35847 (5)	0.55366 (4)	0.02240 (18)
N1	0.47454 (7)	0.12911 (5)	0.91717 (5)	0.02032 (19)
N2	0.62800 (6)	0.25607 (5)	0.98495 (5)	0.01873 (19)
H2A	0.6778	0.2263	0.9534	0.028*
H2C	0.5780	0.2862	0.9560	0.028*
N3	0.79044 (7)	0.37646 (5)	0.91501 (5)	0.02038 (19)
C1	0.35115 (9)	0.14906 (6)	0.76874 (6)	0.0209 (2)
H1B	0.3124	0.1697	0.8140	0.025*
C2	0.30268 (9)	0.16082 (6)	0.69552 (6)	0.0210 (2)
H2B	0.2309	0.1893	0.6910	0.025*
C3	0.35837 (8)	0.13108 (6)	0.62770 (5)	0.0180 (2)
C4	0.46222 (8)	0.08697 (6)	0.63589 (5)	0.0191 (2)
H4A	0.4998	0.0646	0.5908	0.023*
C5	0.51049 (9)	0.07584 (6)	0.70980 (6)	0.0193 (2)
H5A	0.5815	0.0464	0.7146	0.023*
C6	0.45656 (8)	0.10712 (6)	0.77718 (5)	0.0182 (2)
C7	0.51216 (8)	0.09588 (6)	0.85382 (6)	0.0188 (2)
H7A	0.5798	0.0620	0.8564	0.023*
C8	0.53900 (9)	0.11116 (6)	0.98880 (5)	0.0198 (2)
H8A	0.6124	0.0829	0.9751	0.024*
H8B	0.4943	0.0717	1.0224	0.024*
C9	0.56376 (8)	0.19273 (6)	1.03400 (5)	0.0183 (2)
H9A	0.4903	0.2184	1.0515	0.022*
H9B	0.6095	0.1789	1.0814	0.022*
C10	0.69938 (8)	0.31620 (6)	1.03268 (5)	0.0187 (2)
H10A	0.7717	0.2876	1.0482	0.022*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H10B	0.6573	0.3316	1.0812	0.022*
C11	0.72732 (9)	0.39669 (6)	0.98682 (5)	0.0203 (2)
H11A	0.6551	0.4267	0.9731	0.024*
H11B	0.7740	0.4353	1.0199	0.024*
C12	0.75025 (8)	0.40705 (6)	0.85139 (6)	0.0188 (2)
H12A	0.6815	0.4396	0.8539	0.023*
C13	0.80451 (8)	0.39474 (6)	0.77449 (5)	0.0178 (2)
C14	0.74795 (8)	0.42303 (6)	0.70696 (5)	0.0192 (2)
H14A	0.6753	0.4503	0.7117	0.023*
C15	0.79631 (9)	0.41193 (6)	0.63302 (5)	0.0190 (2)
H15A	0.7567	0.4322	0.5879	0.023*
C16	0.90284 (9)	0.37112 (6)	0.62407 (5)	0.0176 (2)
C17	0.96003 (8)	0.34366 (6)	0.69268 (6)	0.0203 (2)
H17A	1.0329	0.3167	0.6884	0.024*
C18	0.91180 (9)	0.35543 (6)	0.76583 (6)	0.0200 (2)
H18A	0.9521	0.3365	0.8112	0.024*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0195 (4)	0.0323 (4)	0.0168 (3)	0.0039 (3)	-0.0027 (3)	0.0013 (3)
O2	0.0206 (4)	0.0307 (4)	0.0159 (3)	0.0027 (3)	0.0029 (3)	-0.0011 (3)
N1	0.0177 (4)	0.0252 (4)	0.0180 (4)	-0.0004 (3)	-0.0020(3)	0.0003 (3)
N2	0.0175 (4)	0.0252 (4)	0.0136 (4)	-0.0030 (3)	-0.0001 (3)	-0.0005 (3)
N3	0.0179 (4)	0.0251 (4)	0.0182 (4)	-0.0013 (3)	0.0031 (3)	-0.0019 (3)
C1	0.0186 (5)	0.0251 (5)	0.0188 (5)	0.0013 (4)	0.0020 (3)	-0.0028 (4)
C2	0.0164 (5)	0.0244 (5)	0.0221 (5)	0.0033 (4)	-0.0006 (3)	-0.0014 (4)
C3	0.0171 (5)	0.0189 (4)	0.0179 (4)	-0.0029 (3)	-0.0012 (3)	0.0010 (3)
C4	0.0184 (5)	0.0215 (5)	0.0173 (4)	0.0004 (4)	0.0019 (3)	-0.0007 (3)
C5	0.0167 (5)	0.0203 (4)	0.0210 (5)	0.0022 (4)	0.0006 (3)	0.0005 (3)
C6	0.0179 (5)	0.0190 (4)	0.0178 (4)	-0.0018 (3)	-0.0007 (3)	0.0006 (3)
C7	0.0168 (5)	0.0198 (4)	0.0199 (5)	-0.0005 (3)	-0.0006 (3)	0.0012 (3)
C8	0.0185 (5)	0.0222 (5)	0.0187 (4)	0.0003 (4)	-0.0017 (3)	0.0014 (4)
С9	0.0172 (5)	0.0238 (5)	0.0139 (4)	-0.0006 (4)	0.0008 (3)	0.0016 (3)
C10	0.0165 (5)	0.0255 (5)	0.0140 (4)	-0.0014 (4)	-0.0006 (3)	-0.0028 (3)
C11	0.0190 (5)	0.0232 (5)	0.0188 (5)	-0.0004 (4)	0.0030 (3)	-0.0034 (4)
C12	0.0167 (5)	0.0189 (4)	0.0208 (5)	-0.0011 (3)	0.0022 (3)	-0.0019 (3)
C13	0.0176 (5)	0.0180 (4)	0.0178 (5)	-0.0018 (3)	0.0017 (3)	-0.0006 (3)
C14	0.0161 (5)	0.0197 (4)	0.0219 (5)	0.0013 (3)	-0.0004 (4)	-0.0006 (4)
C15	0.0188 (5)	0.0210 (4)	0.0171 (4)	-0.0002 (4)	-0.0030 (3)	0.0010 (3)
C16	0.0182 (5)	0.0183 (4)	0.0164 (4)	-0.0032 (3)	0.0011 (3)	-0.0009 (3)
C17	0.0155 (5)	0.0242 (5)	0.0211 (5)	0.0028 (4)	0.0005 (3)	0.0007 (4)
C18	0.0183 (5)	0.0242 (5)	0.0175 (4)	0.0008 (4)	-0.0011 (3)	0.0019 (3)

Geometric parameters (Å, °)

O1—C3	1.3430 (11)	C8—C9	1.5192 (13)
O1—H1A	0.9745	C8—H8A	0.9900
O2—C16	1.3293 (11)	C8—H8B	0.9900

N1—C7	1.2747 (13)	С9—Н9А	0.9900
N1—C8	1.4586 (12)	С9—Н9В	0.9900
N2—C10	1.4957 (12)	C10—C11	1.5183 (14)
N2—C9	1.4968 (12)	C10—H10A	0.9900
N2—H2A	0.9170	C10—H10B	0.9900
N2—H2C	0.8972	C11—H11A	0.9900
N3—C12	1.2730 (13)	C11—H11B	0.9900
N3—C11	1.4605 (12)	C12—C13	1.4656 (13)
C1—C2	1.3801 (14)	C12—H12A	0.9500
C1—C6	1.3990 (14)	C13—C14	1.3965 (13)
C1—H1B	0.9500	C13—C18	1.4000 (14)
C2—C3	1.4031 (13)	C14—C15	1.3892 (13)
C2—H2B	0.9500	C14—H14A	0.9500
C3—C4	1.3992 (14)	C15—C16	1.4032 (14)
C4—C5	1.3883 (13)	C15—H15A	0.9500
C4—H4A	0.9500	C16—C17	1.4111 (13)
C5—C6	1.3959 (13)	C17—C18	1.3778 (13)
С5—Н5А	0.9500	C17—H17A	0.9500
C6—C7	1.4666 (13)	C18—H18A	0.9500
С7—Н7А	0.9500		
C3—O1—H1A	111.6	С8—С9—Н9А	109.3
C7—N1—C8	116.82 (9)	N2—C9—H9B	109.3
C10—N2—C9	113.08 (7)	С8—С9—Н9В	109.3
C10—N2—H2A	106.7	Н9А—С9—Н9В	107.9
C9—N2—H2A	107.8	N2—C10—C11	111.28 (7)
C10—N2—H2C	109.1	N2—C10—H10A	109.4
C9—N2—H2C	109.3	C11—C10—H10A	109.4
H2A—N2—H2C	110.8	N2—C10—H10B	109.4
C12—N3—C11	116.42 (9)	C11—C10—H10B	109.4
C2—C1—C6	120.91 (9)	H10A—C10—H10B	108.0
C2—C1—H1B	119.5	N3—C11—C10	110.95 (8)
C6—C1—H1B	119.5	N3—C11—H11A	109.4
C1—C2—C3	120.63 (9)	C10-C11-H11A	109.4
C1—C2—H2B	119.7	N3—C11—H11B	109.4
C3—C2—H2B	119.7	C10-C11-H11B	109.4
O1—C3—C4	122.06 (9)	H11A—C11—H11B	108.0
O1—C3—C2	119.18 (9)	N3—C12—C13	123.46 (9)
C4—C3—C2	118.75 (9)	N3—C12—H12A	118.3
C5—C4—C3	120.11 (9)	C13—C12—H12A	118.3
С5—С4—Н4А	119.9	C14—C13—C18	118.25 (8)
C3—C4—H4A	119.9	C14—C13—C12	119.33 (9)
C4—C5—C6	121.20 (9)	C18—C13—C12	122.42 (9)
C4—C5—H5A	119.4	C15—C14—C13	120.97 (9)
С6—С5—Н5А	119.4	C15—C14—H14A	119.5
C5—C6—C1	118.35 (9)	C13—C14—H14A	119.5
C5—C6—C7	119.34 (9)	C14—C15—C16	120.88 (9)
C1—C6—C7	122.31 (9)	C14—C15—H15A	119.6
N1—C7—C6	123.47 (9)	C16—C15—H15A	119.6
N1—C7—H7A	118.3	O2-C16-C15	121.68 (8)

supplementary materials

С6—С7—Н7А	118.3	O2—C16—C17	120.56 (9)
N1—C8—C9	111.00 (8)	C15—C16—C17	117.76 (8)
N1—C8—H8A	109.4	C18—C17—C16	120.96 (9)
С9—С8—Н8А	109.4	С18—С17—Н17А	119.5
N1—C8—H8B	109.4	C16-C17-H17A	119.5
С9—С8—Н8В	109.4	C17—C18—C13	121.15 (9)
H8A—C8—H8B	108.0	C17—C18—H18A	119.4
N2—C9—C8	111.72 (7)	C13—C18—H18A	119.4
N2—C9—H9A	109.3		
C6—C1—C2—C3	-0.18 (16)	C9—N2—C10—C11	-159.33 (8)
C1—C2—C3—O1	-178.33 (9)	C12—N3—C11—C10	127.76 (9)
C1—C2—C3—C4	1.95 (15)	N2-C10-C11-N3	-59.52 (10)
O1—C3—C4—C5	178.05 (9)	C11—N3—C12—C13	178.42 (8)
C2—C3—C4—C5	-2.24 (14)	N3-C12-C13-C14	173.33 (9)
C3—C4—C5—C6	0.78 (15)	N3-C12-C13-C18	-6.70 (15)
C4—C5—C6—C1	0.99 (14)	C18-C13-C14-C15	0.49 (14)
C4—C5—C6—C7	-178.39 (9)	C12-C13-C14-C15	-179.54 (9)
C2—C1—C6—C5	-1.29 (15)	C13-C14-C15-C16	0.70 (15)
C2—C1—C6—C7	178.07 (9)	C14—C15—C16—O2	178.66 (9)
C8—N1—C7—C6	179.39 (8)	C14-C15-C16-C17	-1.43 (14)
C5-C6-C7-N1	173.30 (9)	O2-C16-C17-C18	-179.09 (9)
C1—C6—C7—N1	-6.06 (15)	C15-C16-C17-C18	1.00 (14)
C7—N1—C8—C9	130.85 (9)	C16—C17—C18—C13	0.18 (15)
C10—N2—C9—C8	-153.53 (8)	C14—C13—C18—C17	-0.93 (14)
N1-C8-C9-N2	-57.22 (10)	C12-C13-C18-C17	179.10 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot\!\!\cdot\!\!A$
O1—H1A···O2 ⁱ	0.97	1.51	2.4846 (11)	173
N2—H2A···O1 ⁱⁱ	0.92	2.00	2.8325 (12)	149
N2—H2C···O2 ⁱⁱⁱ	0.90	1.88	2.7075 (12)	152

Symmetry codes: (i) x-1/2, -y+1/2, -z+1; (ii) x+1/2, y, -z+3/2; (iii) x-1/2, y, -z+3/2.

